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Abstract
Canonical tilings of type (T ,�), (T ∗,�) for quasicrystals are projected from
boundaries of Voronoi or Delone cells in an nD lattice �. Delone clusters
are taken as projections of Delone cells. In general and for icosahedral tilings
T ∗, projected from the six-dimensional primitive lattices � = P and from
D6 ∼ 2F , the Delone clusters and their filling, covering and fundamental
domain properties are analysed by dual tiling and window theory.

PACS number: 6144B

1. Introduction

Quasicrystals show long-range atomic order based on quasiperiodicity. A quasiperiodic
structure is successfully described as a sectionE‖ of an n-dimensional spaceEn equipped with
a lattice�. The orthogonal complementE⊥ of the section then provides through the concept of
windows the characterization of the quasiperiodic structure. The concept of windows applies
to atomic positions and neighbourhoods, to tiles, tilings and their vertex configurations, to
inflation rules and to Fourier theory. As an example of the fully developed window technique
for icosahedral quasicrystals see the work of Katz and Gratias [9, 10].

Covering provides a recent alternative concept for atomic order in quasicrystals. Here the
atomic positions are organized into a few clusters of fixed atomic occupation. The covering
clusters encompass patches of tiles and thereby reveal new features of atomic correlations
in quasicrystals. By overlap these clusters build the long-range structure. Decagonal
clusters were derived by Conway [3] and Gummelt [7] in relation to the 2D Penrose–
Robinson pattern. Steinhardt and coworkers [20] implemented these decagonal clusters for
decagonal quasicrystals and emphasized relations between clusters and unit cells. Duneau [4]
constructed different cluster coverings for the vertices of the octagonal and Penrose tilings
and gave windows for them. The structures analysed by these authors are all essentially 2D
quasiperiodic, complemented by a 1D periodic structure. More recently Duneau [5] and Gratias
et al [6] studied extended clusters in icosahedral quasicrystals. Their clusters are required to
cover the atomic positions of specific models. Connections between the window and covering
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approach were given in [15] in particular for the one-dimensional Fibonacci and the two-
dimensional Penrose and triangle tilings. All these tilings arise by projection from the dual
lattice geometry of the Voronoi and Delone cells. In the same context, V and D clusters were
constructed as projections of Voronoi and Delone cells. The notion of fundamental domains
was introduced and used to examine the relation between clusters and unit cells. The full
lattice geometry and the relation between these notions was elaborated in [17] for the Delone
clusters in the triangle tiling and the lattice � = A4.

In what follows we go beyond the specific tilings analysed so far. We explore
Delone clusters, covering and fundamental domains as general concepts in the structure of
quasicrystals. In sections 1–6 we introduce general notions and results on lattices, dual cells
and boundaries, dual tiling theory and covering for quasicrystals. We demonstrate that these
clusters appear and can be constructed with general features in all dual tilings. Since we can
keep the relation to the tilings within these clusters, they provide frames of reference for a
variety of atomic positions.

In the following sections 7–13 we implement the icosahedral Delone clusters and their
windows. We derive unique fillings of these clusters in tilings for the icosahedral lattices
� = P andD6 ∼ 2F . The latter appears very often in icosahedral quasicrystals. We examine
the fundamental domain and the covering properties and find relations depending on the lattice.
The distinction between the covering of quasiperiodic points and of quasiperiodic tiles becomes
manifest in these tilings. Main results derived here were announced in [16].

2. Voronoi and Delone cells and dual boundaries

Consider for even n a lattice � whose basis spans En. We pass from the lattices � ⊂ En to
dual polytopes and by projection form the building blocks for tilings and their windows. The
following properties, compare [3, 13], apply to all lattices under consideration. The Voronoi
cell at a point q ∈ �, � ⊂ En is the set of points V (q) = 〈x|q ′ �= q → |x − q| � |x − q ′|〉.
It is a convex polytope bounded by hyperplanes. Its p-boundaries of dimension p, 0 � p � n
we denote by X(q) where the argument q keeps track of the centre of the bounded Voronoi
domain. The 0-boundaries, the vertices of the Voronoi cells, are the holes, [3, p 33], of the
lattice. A p-boundary X(q) will in general bound also other Voronoi domains V (q ′) with
q ′ �= q.

Definition 1 (Dual boundaries). For any fixed p-boundary X(q) ∈ V (q), let s(X) = 〈q ′〉
denote the set of all lattice points q ′ (including q) which have X = X(q) as a boundary of
their Voronoi cell V (q ′).

(i) The intersection polytope Y := ∩q ′∈s(X)V (q ′) determines the boundary X = Y .
(ii) The boundaryX∗ dual toX is the polytope defined as the convex hullX∗ := 〈conv(q ′), q ′ ∈

s(X)〉.
Boundaries and their duals have complementary dimensions (p, n−p). Given a boundary

X(q), the vertices or 0-boundaries q ′ ∈ X∗(q) of its dual X∗(q) determine by definition 1 the
set s(X), so we may write s(X) = 〈q ′〉 = s(X∗). The duals to the 0-boundaries or holes h
are the Delone cellsDh, [3, p 35], of the lattice. These dual Delone cells are bounded by dual
(n− p)-boundaries X∗. The following general inclusion properties arise [13] from duality:

Proposition 2 (Inclusion relations of dual boundaries). Consider dual pairs of boundaries
X,X∗ and Y, Y ∗.

(i) If X ⊂ Y then Y ∗ ⊂ X∗,



Delone clusters and coverings for icosahedral quasicrystals 1887

(ii) if X∗ ⊂ Y ∗ then Y ⊂ X.

Under the action of �, both the holes h and the Delone cells Dh fall into a finite number
of distinct orbits which we denote by h = a, b, . . . .

3. Dual tilings and their windows

A decomposition En = E‖ + E⊥, dim(E‖) = dim(E⊥) = n/2 = integer, irrational with
respect to the lattice � ⊂ En, arises in quasicrystals from a non-crystallographic point
symmetry. For icosahedral point symmetry compare section 7. It allows us to project
boundaries and their duals. From the (n/2)-boundaries of Voronoi and Delone cells we define
in En the klotz polytopes [11, 13] as the direct products

Xj‖(q)⊗X∗
j⊥(q)

X∗
j‖(q)⊗Xj⊥(q)

(1)

where the index j labels different (n/2)-boundaries. The next two results were obtained
in [13]:

Proposition 3. The klotz polytopes equation (1) in En have the following properties:

(i) They form a �-periodic tiling of En,
(ii) any boundary of a klotz polytope is either parallel or perpendicular to the subspaces E‖

and E⊥.
(iii) If the set of boundaries 〈Xj(q)〉 at a fixed lattice point q forms orbit representatives under

�, then the corresponding set of representative klotz polytopes is a fundamental domain
(section 4) with respect to �.

Proposition 4 (Canonical tilings). The cuts E‖ + c⊥ through the first or second klotz
construction of equation (1) are two tilings (T ,�), (T ∗,�). The tiles are projections of
the (n/2)-boundaries Xj‖ or X∗

j‖ from Voronoi and Delone cells respectively. It suffices to let
c⊥ run over the projection of the unit cell in E⊥.

Turn to the window description of these tilings. A window w(X∗) ∈ E⊥ is defined as
a polytope in En such that X∗ ∈ T ∗ appears whenever (E‖ + c⊥) ∩ w(X∗) �= 0. In this
description the windows must be attached to all lattice points.

In what follows we shall consider the tilings (T ∗,�).

Proposition 5. The windows for the tiles in the canonical tilings are w(Xj‖) = X∗
⊥,

w(X∗
j‖) = X⊥ respectively. The window for the projected lattice points q‖, which in (T ∗,�)

form the vertices of the tiles, is V⊥.

Proof. The first part follows from the properties of the klotz construction equation (4): the tile
X∗
j‖ appears whenever its dualXj⊥ ∈ V⊥ intersects with E‖ + c⊥. By use of the dual inclusion

relation proposition 2 one finds that all projected lattice points q‖ are 0-boundaries of a tile
X∗
j‖. The projected dual Voronoi cell V⊥ therefore must contain the tile windowXj⊥, and this

tile window in turn must contain the perpendicular projection q⊥ = q − q‖. �
An alternative description of the tilings uses windows only at one fixed lattice point, say

q = 0. This can be seen as follows. Assume c⊥ ∈ V⊥(0). The intersection of tile windows
with c⊥ ∩w(X∗

j‖) �= 0 determines a union of tiles ∪jX∗
j‖ which share a vertex of (T ∗,�) and

close the solid angle around it. This is a vertex configuration. Each Delone edge or 1-boundary
of a tile of (T ∗,�) in this configuration is the projection q⊥ of a lattice vector q = q‖ + q⊥.
We can move in the tiling along q‖ = q − q⊥ from the initial to a next vertex and refer it to
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the new V⊥(q). This is equivalent to the replacement c⊥ → c⊥ − q⊥ while keeping the initial
window V⊥(0). We may therefore keep the initial window and its boundaries, transform the
value of c⊥ by −q⊥ in the window V⊥ and move by q‖ = q − q⊥ from vertex to vertex in the
tiling.

4. Fundamental domains

To explore unit cell properties for quasicrystals we need concepts of fundamental domains
as particular point sets under the action of translations. We distinguish a geometric action
on point sets from an action by linear operators on elements of a linear space of functions.
The class of functions we have in mind should in crystals or quasicrystals describe observables
such as atomic positions or the electronic charge density. We follow the standard notions given
in [15]. For En equipped with a lattice � we recall the well known

Definition 6. Consider the geometric action � × En → En given by q ∈ �, x ∈ En :
(q, x) → x ′ = x + q. A fundamental domain F of En under � is a subset which has exactly
one point from each orbit under this action.

Definition 7. Consider complex-valued functions f with domain of definition En and define
for q ∈ � group operators by Tq : f (x) → (Tqf )(x) := f (x − q). Suppose that f is
�-periodic. A fundamental domain for f is a subset F(�) of points such that any value taken
by f on En − F(�) can be obtained by the group action of � on f .

Both notions yield the same candidates for fundamental domains as cells for the lattice.
The shape of the fundamental domain is not unique; the primitive and the Voronoi cell for a
lattice are examples of fundamental domains. The volume V (F) is unique.

We need an extension of the notion of a fundamental domain to quasiperiodic systems, in
the absence of periodic lattice symmetry. Consider an irrational linear subspaceE‖ ⊂ En. The
restriction of a �-periodic function f from En to the domain E‖ of dimension m determines
a general quasiperiodic function on E‖ (compare Bohr [2] and Arnold [1]). In general the
irrational subspace E‖ will slice En and hit a dense subset of the n-dimensional unit cell
modulo�. It follows that a reasonable generalization of the fundamental domain for a general
quasiperiodic function on m-dimensional E‖ is still the n-dimensional fundamental domain
F = F(�). In this generality, the fundamental domain is essentially a polytope of dimension
n larger than the dimension m of the domain E‖ of the quasiperiodic function.

A different concept of fundamental domain applies for a class of quasiperiodic tilings,
projected again from a lattice � ∈ En to a subspace E‖ of dimension m < n. For this class
of quasiperiodic tilings we can require the quasiperiodic functions to be compatible with the
tiling. We follow [11] and [15] and extend the notions of definitions 6 and 7 by

Definition 8. Let a quasiperiodic tiling (T ,�) consist of a minimal finite set 〈Pi〉 of prototiles
Pi ∈ E‖ and their translates. A fundamental domain F(T ,�) is a subset of points inE‖ which
contains one and only one translate of any point from any prototile.

Definition 9. A quasiperiodic function f on E‖ is called compatible with the tiling (T ,�) if
its values are repeated on all the translates in (T ,�) of any prototile. A fundamental domain
for such functions is a subset F(T ,�) ⊂ E‖ such that any value taken by f on E‖ −F(T ,�)
arises by a translation between tiles in the tiling from an identical value on F(T ,�) ⊂ E‖.

The translation vectors of a prototile in a quasiperiodic tiling all belong to the module�‖.
If two translates of a fixed prototile occur in the tiling, the sum of the two translation vectors in
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general need not be a translation vector in the tiling for this prototile. The notions definitions 8
and 9 yield the same candidates for fundamental domains. In contrast to general quasiperiodic
functions, these fundamental domains can be taken as bounded point sets in E‖ of dimension
m. One natural choice for them is the set of all points from all the prototiles. The volume
of this fundamental domain for this and any other choice can be determined in terms of the
prototiles by |F(T ,�)| = ∑

i |Pi | <∞.

5. Delone clusters and their windows

We explore the properties of Delone clusters.

Definition 10 (Delone clusters). A DeloneDh-cluster in the tiling (T ∗,�) is [15] the parallel
projection Dh‖ of a Delone cell from the lattice �.

We shall construct the Delone clusters in the tiling from their windows w(Dh).

Proposition 11 (Filling of Delone cell). Fix a hole point h⊥ in E⊥ and consider all the
projected (n/2)-boundaries Xj⊥(h) (i) each with a vertex h at this hole point. Determine
a maximal intersection w of these projected boundaries which (ii) share at least one fixed
interior point x⊥ �= h⊥,

w = ∩jXj⊥(h). (2)

Then w = w(Dh‖ ) is the window for a Delone cluster Dh‖ . The Delone cluster is the union of
all the projected tiles dual to those occurring in equation (2),

Dh‖ = ∪jX∗
j‖. (3)

This union is a filling ofDh‖ with no gaps and no overlaps of dimension (n/2), and compatible
with the tiling.

Proof. First part: the hole point h by assumption (i) is a 0-boundary contained in any (n/2)-
boundary Xj(h) of the intersection equation (2), h ⊂ Xj(h). The dual to this 0-boundary
is a Delone cell Dh. With proposition 2 it follows that X∗

j ⊂ Dh. This subset property
extends to the projections. Second part: the tile windows for any pair Xj⊥, Xl⊥, j �= l by
assumption (ii) intersect in at least one interior point x⊥. Consider the corresponding klotz
polytopes, equation (1), indexed by j, l. Their projections to E⊥ share an interior point. For
their projections to E‖ we conclude X∗

j‖ ∩ X∗
l‖ = 0; there is no overlap for j �= l. Otherwise

the full nD klotz polytopes would share interior points. �

We now describe the complex relation of the filled Delone cluster to the tiling. In the
window description of proposition 11, the intersecting tiles Xj⊥(h) which form the window
w(h) share the hole position h but belong to Voronoi cells at various lattice points q. These
lattice points for each coding tile can be found as follows: go withinE⊥ for each coding tile in
equation (2) to its dual asXj⊥ → X∗

j⊥. The vertices ofX∗
j⊥ by definition 1 are projections q ′

⊥
of all the lattice points q ′ whose Voronoi cells haveXj as a boundary. To find from equation (2)
all vertex configurations which contribute to the filling equation (3), we must collect the full
set of lattice points s(Dh) = 〈q ′|q ′ ∈ X∗

j , Xj⊥ ∈ w(Dh‖ )〉. Starting from one such projection
q⊥ ∈ V⊥(q), an initial window w(h) must belong to V⊥(q). We shift this initial window to
all the positions 〈w(h) + (q ′ − q)⊥〉, q ′ ∈ s(Dh‖ ). All these shifted windows are inside V⊥(q)
and determine parts of the full window for a fixed orientation. In the tiling the set of parallel
projections 〈q ′

‖, q
′ ∈ s(Dh)〉 becomes the complete vertex set from which the filling Dh‖ can

be seen in the tiling. The shifted windows in V⊥(q) determine all the vertex configurations



1890 P Kramer

appearing in this filling. The vertex configurations inside the filling are complete, those at the
boundary of the filling are incomplete.

The fillingDh‖ can occur in various orientations. By application of the point groupG at a
fixed hole of type h in V⊥ one finds aG-windowwG := G×w(h). It codes all the orientations
of the fillingDh‖ seen from a fixed vertex. Repeating this construction at any hole of type h in
V⊥ one finds the total window for this type.

All these constructions are exemplified in detail in [17] for Delone clusters in the
quasiperiodic triangle tiling.

6. Covering by Delone clusters

Once the windows of the Delone clusters have been constructed, their covering properties can
be explored by relating these windows to the windows of the tiling. We distinguish covering
of vertices from covering of tiles. From dual tiling theory we give criteria for them.

Proposition 12 (Window criterion for covering of vertex points). The Delone clusters
form a covering of lattice or vertex points q‖ in the tiling (T ∗,�) ⊂ E‖ if and only if the
collection

⋃
i wG(D

i
‖)(hi⊥) of all shifted G-windows covers V⊥.

Proof. If the criterion is fulfilled, any point in a tile windowq⊥ ∈ X⊥ ⊂ w(X∗
‖) is in the window

of at least one Delone cluster. It follows that the corresponding point q‖ = (q − q⊥) ∈ X∗
‖ is

covered by this Delone cluster. The converse works as well. �

Proposition 13 (Window criterion for covering of tiles). A tileX∗
‖ in the tiling is covered by

at least one Delone cluster if and only if its windoww(X∗
‖) is covered by all the windowsw(h)

at the local hole vertices h⊥ ∈ X⊥.

Proof. Any hole vertex h⊥ ∈ X⊥ is (the projection of) an intersection of the (n/2)-boundary
Xj⊥ with a 0-boundary of a Voronoi cell. The dual inclusion relation according to proposition 2,
section 4, is that X∗

j‖ as a boundary belongs to the Delone cell Dh‖ . �

The distinction between the coverings according to propositions 12 and 13 is relevant.
Clearly the covering of tiles according to proposition 13 implies the covering of lattice points,
proposition 12. The converse is not true. It is easy to imagine a full covering of all the vertices
in a tiling which does not cover all the points of the tiles. A full covering of all points x ∈ E‖ in
a tiling requires that any point of any tile be covered. In the two-dimensional triangle tiling [17]
the Delone clusters cover all tiles and therefore all vertices. We shall see in section 13 that in
icosahedral tilings this is not the case.

7. Six-dimensional lattices and the icosahedral Coxeter group

We introduce the lattices and point groups used for the construction of icosahedral tilings. By
� we denote both a lattice and its translation group. The primitive hypercubic lattice � = P
in six dimensions spanned by six orthonormal unit vectors (e1, . . . , e6) we denote as

P =
〈 ∑
j

nj ej , n ∈ Z6

〉
el · ek = δlk. (4)

The holohedry of this lattice is the hyperoctahedral group %(6), |%(6)| = 266!, generated by
all permutations and reflections of the basis vectors. The standard root lattice� = D6 [3] can
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Figure 1. Coxeter diagrams for D6 and its subgroup H3.

be taken as a centring 2F of P . We keep a factor 2 in order to have simple relations to the
lattice P . A basis of D6 ∼ 2F is

(b1, . . . , b6) = (e1, . . . , e6)Z
2F (5)

Z2F =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 1 1 1 2



. (6)

The Weyl group ofD6 is a Coxeter group which has the icosahedral Coxeter groupH3, |H3| =
120 as a subgroup. We give the Coxeter diagrams for both groups in figure 1.

The Coxeter relations for the generators of H3 read

R2
1 = R2

2 = R2
3 = (R1R2)

5 = (R2R3)
3 = (R3R1)

2 = e. (7)

In the lattices these generators can be expressed as signed permutations acting on the basis
vectors equation (4),

R1 = (23)(46) R2 = (36)(45) R3 = (15)(23). (8)

The six-dimensional representation ofH3 is reducible into two inequivalent three-dimensional
irreducible representations D‖(H3),D⊥(H3) in orthogonal subspaces E‖, E⊥. An explicit
reduction H3 = M−1D‖(H3)⊕ D⊥(H3)M is provided [12, 14] by the matrix

M =
√

1/2(τ + 2)




0 1 1 τ 0 τ

1 τ τ 0 1 0
τ 0 0 1 τ 1
0 τ τ 1 0 1
τ 1 1 0 τ 0
1 0 0 τ 1 τ



. (9)

D‖(H3) is the standard defining irreducible representation of H3. The parallel and
perpendicular projections of the six unit vectors equation (4) are given by the set of column
vectors in the upper and lower three rows of equation (9) respectively. To the three generators,
equation (8), there correspond in E‖ three Weyl vectors perpendicular to reflection planes,

R1 → (e6 − e4)‖ R2 → (e6 − e3)‖ R3 → (−e2 − e3)‖. (10)

The stereographic projections of all axes were given in figures 12.2 and 12.3 of [14]. The
three reflection planes intersect pairwise in closest five-, three- and twofold axes and bound an
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infinite Coxeter cone. The points within this infinite Coxeter cone form a fundamental domain
under the action of the Coxeter group on E‖. Under D‖(H3), all similar Coxeter cones are
mapped into one another. By a spherical Coxeter cone we denote the intersection of this infinite
cone with the unit sphere in E‖. In later sections we shall require intersections of the infinite
Coxeter cone with polyhedra centred at the intersection of the reflection planes. In E⊥ the
corresponding Weyl reflections are still given by the signed permutations equation (8), which
now act on the perpendicular projections of the vectors equation (4). Since the representation
D⊥(H3) in E⊥ is inequivalent, the Coxeter cone in E⊥ as a fundamental domain must be
redefined.

The projections �‖ of the lattice basis vectors of P or D6 to E‖ provide two of the three
irreducible icosahedral modules [14] in the form �‖.

For the scaling symmetry [14] we use the projectors P‖ = M−1I‖M,P⊥ = M−1I⊥M to
the subspaces E‖, E⊥. We define with τ := (1 +

√
5)/2 the matrix

S(τ) = τP‖ − (1/τ)P⊥ = (1/2)




1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



. (11)

The scaling symmetries of the lattices can now be expressed in the basis of P as

(S(τ ))3 = S(τ 3) : P → P S(τ) : D6 → D6 (12)

where the matrix S is to be applied from the right to the basis vectors equation (5).

8. The icosahedral tilings (T ∗, P/D6)

The tiling (T ∗, P ) [14] belongs to the primitive hypercubic lattice� = P ⊂ E6 equation (4).
Both the Voronoi and Delone cells are unit hypercubes with centres at lattice points q =
(000000) + P and hole points h = (1111111)/2 + P respectively. The projection �‖ is the
primitive icosahedral module. Its module basis is the six vectors (e1‖, . . . , e6‖) given by the
entries of the first three rows of the matrix M in equation (9). In E‖, E⊥ they point along
fivefold axes. The tiles are an obtuse and an oblate rhombohedron, which we denote by
(F ∗,G∗)‖. The vertex window, the projected hypercube V⊥, is Kepler’s triacontahedron. The
dual windows for the tiles are rhombohedra (F,G)⊥.

The tiling (T ∗,D6) [12] belongs to the face-centred hypercubic lattice with the basis
equation (5). There are three Delone cellsDa,Db,Dc located at three types of holeh = a, b, c.
Their representatives are given in table 1. The projection �‖ = (D6)‖ is the icosahedral 2F -
module. Its module basis is the six vectors (b1‖, . . . , b6‖) from equation (5). In E‖ they point
along twofold axes. The tiles are six tetrahedra (A∗, B∗, C∗,D∗, F ∗,G∗)‖. The Voronoi cell
V for � = D6 differs from the hypercube, but its projection V⊥, the vertex window of the
tiling, is again a triacontahedron. The dual windows (A,B,C,D, F,G)⊥ are four pyramids
with a standard rhombus base and two rhombohedra which in shape coincide with the ones of
the primitive tiling. The tiling (T ∗, P ) is obtained from (T ∗,D6) by blowing up the tetrahedral
tiles (F ∗,G∗)‖ into rhombohedra and omitting all other tiles. Tiles and windows in detail are
given in tables 4–6.
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Table 1. Representative hole positions in the window V⊥.

Type Position hi Distance |Orbit|

c 1
2 (111111) τ©5 12
1
2 (111111) ©3 20

a 1
2 (111111) τ©3 20
1
2 (111111) τ−1©5 12

b (000001) ©5 12

Figure 2. Delone clusters for � = D6: Da‖ , Db‖ are icosahedra (edge length τ©2 , ©2 ), Dc‖ is a
dodecahedron (edge length ©2 ). For � = P the Delone clusters are Kepler’s triacontahedra V‖
(edge length ©2 ).

(This figure is in colour only in the electronic version, see www.iop.org)

9. Delone clusters in the icosahedral tilings (T ∗, P/D6)

In the primitive hypercubic lattice � = P both the Voronoi and the single Delone cell are
hypercubes. Under icosahedral projection they become Kepler’s triacontahedra. There are
three types of hole and Delone cells Da,Db,Dc in � = D6. The Delone clusters Dh‖ are
shown in figure 2. The hole positions are given in table 1. ©5 , ©2 and ©3 denote standards of
length [12] along 5-, 2- and 3-axes,

©5 =
√

1

2
©2 =

√
2

τ + 2
©3 =

√
3

2τ + 2
. (13)

We summarize here the results of the analysis given in sections 10–13.

Proposition 14 (Delone clusters in (T ∗, P/D6)).

(1) The windowsw(Dh‖ ) for fixed orientation are parts of Coxeter cones with closest axis sets
(τ−1)(©2 /2,©5 /τ,©3 /τ), bounded by a plane through the endpoints of these axes.

(2) The G-windows under H3 applied with respect to the hole position h‖ are scaled
triacontahedra wH3(D

(a,c)
‖ ) = wH3(V‖) = τ−2V⊥, wH3(D

b
‖) = τ−3V⊥ centred at

representative hole positions h⊥ of table 1. If h⊥ is a point on the boundary of V⊥,
the scaled triacontahedron centred at h⊥ reduces to its intersection with V⊥.

(3) The Delone clusters for fixed orientation are uniquely filled by tiles, as summarized in
tables 2 and 3 and given in detail in tables 4–6. The filling breaks the local icosahedral
symmetry. No orientation of any tile is repeated within the filling. The filling of the Delone
clusters in (T ∗, P ) arises from that of D(a,c)‖ in (T ∗,D6) by blowing up (F ∗,G∗)‖ into
rhombohedra and omitting all other tiles.

(4) The Delone clusters Da‖ ,D
b
‖ ,D

c
‖ and their mirror images together do not form a

fundamental domain F(T ∗,D6), table 2. Kepler’s [8] triacontahedron V‖ = F(T ∗, P )
is a fundamental domain, table 3.
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Table 2. Number of tiles in Delone clusters and in F = F(T ∗,D6), see table 8.

Tile A∗
‖ B∗

‖ C∗
‖ D

∗
‖ F ∗

‖ G∗
‖

Da‖ 3 1 16 8 10 10

Db‖ 1 7 2 6 — —

Dc‖ 7 3 4 4 10 10

F 30 30 60 60 20 20

Table 3. Number of tiles in Delone clusters V‖ and in F = F(T ∗, P ).

Tile F‖ G‖

V‖, F 10 10

(5) The Delone G-windows cover V⊥ up to a fraction τ−9. This means that 98.7 per cent of
the vertices in the tiling are covered by Delone clusters.

Kepler’s triacontahedron [8], the icosahedral projection of the six-dimensional hypercube,
appeared as a window at the beginning of quasicrystallography. Now it arises as a Delone
cluster in icosahedral quasicrystals.

10. Filling of icosahedral Delone clusters

From proposition 11 we must construct in E⊥ at each hole position h = a, c, b a maximal
intersection of coding tiles. All solid angles at hole positions of the coding tiles contain an
equal number of right and left spherical Coxeter cones of volume ω = 4π/120, each one
spanned by a closest set of two-, five- and threefold axes. The Coxeter cone must be redefined
in E⊥ in line with the representation D⊥(H3). It is easy to see that the intersection of coding
tiles in all three cases will be part of a Coxeter cone in E⊥ bounded by plane(s). We shall
choose in E⊥ an initial infinite Coxeter cone defined by the three vectors

(e1 + e5)⊥/2 |(e1 + e5)⊥|/2 = ©2 /2
(+e1 + e2 − e3 − e4 + e5 + e6)⊥/2 |(+e1 + e2 − e3 − e4 + e5 + e6)⊥|/2 = ©5 /τ
(e1 + e2 + e3)⊥ |(e1 + e2 + e3)⊥| = ©3 /τ

(14)

which form a closest set of two-, five- and threefold axes. This amounts to fixing a single
orientation for the coding and filling. The coding tiles in E⊥ are denoted by X, the tiles in the
filling by their dualsX∗. The relation between the two is taken from [14]. In tables 4–6 we give
a complete algebraic description of all the tiles and windows in standard positions. In [14] the
expressions for the boundaries refer to a lattice point q and so we write them as X(q),X∗(q).
To apply proposition 11 we must rewrite the boundaries as X(h),X∗(h) where the boundary
X(h) is seen from one of its specific vertex and hole points h. The two expressions are related
by a shift

X(h) = X(q) + t t = h− q X∗(h) = X∗(q) + t. (15)

Consider a standard fixed pair of dual boundaries X(h),X∗(h). All other copies of X(h)
which contribute to the intersection

⋂
j Xj⊥(h) of proposition 11 are obtained by the action

of icosahedral rotations g : X(h)→ gX(h). The rotation g refers to the hole point h and can
be expressed as a permutation of the basis vectors (e1, . . . , e6) in E6. Permutations are given
in signed cycle notation. The coding and the filling boundaries in proposition 11 can then be
listed as follows:
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(i) Choose an initial Coxeter cone in E⊥ at a hole position h = a, c or b.
(ii) For X⊥(h) = (A,B,C,D, F,G)⊥(h) choose a standard position of X⊥(h) which

contains interior points of the initial Coxeter cone. If the boundary X⊥ has several hole
positions of the same type h not connected by a local symmetry of the boundary, each one
must be treated separately. We distinguish these hole positions by Greek indices α, β, . . . .

(iii) For one such choice, the boundaryX⊥(h) in standard position at h⊥ spans a solid angle%
which in all cases is composed from an equal number of (right and left) spherical Coxeter
cones each of solid angleω = 4π/120. By ν we denote the number of rotated occurrences
of a tile window. This number is obtained from the total solid angle % at the hole vertex
h⊥ as ν = %/(2ω). The division by the factor 2 arises because we only count right
Coxeter cones within%. An exception in this counting arises for the cases whenXj⊥ as a
polytope has a rotational symmetry with respect to the hole position h⊥. Such rotational
symmetries occur at F(a)(β),G(a)(β), F (c)(β),G(c)(β), A(b), B(b) (see tables 4–6).
For any right Coxeter cone contained in % there is an icosahedral rotation g which maps
it into the initial Coxeter cone. It follows that gX⊥(h) contributes to the intersection. The
set of these rotations we denote by S(X), |S(X)| = ν. The complete window equation (2)
can now be written as

w(Dh‖ ) =
⋂
j

Xj⊥(h) =
⋂ (( ⋂

g∈S(A)
gA⊥(h)

)

×
( ⋂
g∈S(B)

gB⊥(h)
)

· · ·
( ⋂
g∈S(G)

gG⊥(h)
))
. (16)

(iv) After constructing in this fashion a complete list of coding tiles in the intersection, we
look for the tiles which by their faces bound the initial Coxeter cone. The result is that the
bound is always given by a single plane perpendicular to the twofold axis. The bounded
Coxeter cone then belongs to a triacontahedron around h⊥ which for h = a, c is τ−2V⊥
and for h = b is τ−3V⊥.

(v) The positions of X∗
‖(h) which contribute to the filling are by proposition 11 in one-to-

one correspondence to S(X). We list in the same order the dual boundaries X∗(h) =
(A∗, B∗, C∗,D∗, F ∗,G∗)(h). The filling of the Delone cell Dh at fixed orientation is
given by rewriting equation (3) in detail as

Dh‖ =
⋃
j

X∗
j‖(h) =

⋃ (( ⋃
g∈S(A)

gA∗
‖(h)

)( ⋃
g∈S(B)

gB∗
‖ (h)

)
· · ·

( ⋃
g∈S(G)

gG∗
‖(h)

))
.

(17)

In tables 4–6, we use the following rules in E⊥ for the inflation of vectors along three-
and fivefold axes derived from equation (11):

i3 = ((narrow forward triple)− (wide forward triple))/2,
τ i3 = ((narrow forward triple) + (wide forward triple))/2,
τ i5 = τei⊥ = (forward quintuple + ei⊥)/2
τ−1i5 = ei⊥/τ = (forward quintuple − ei⊥)/2.

Tables 4–6. For each pair of dual boundaries X(h),X∗(h) we list the standard positions,
the numbers ν and % defined under (iii) and (iv) and the set S(X) of orientations, given as
signed permutations g applied to the standard position, which contribute to the intersection and
filling. Coefficients in front of vectors always range as 0 � µj � 1. The brackets 〈, 〉 denote
the convex hull of the vectors included. A circle ◦ denotes the join of two polytopes. The
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Table 4. Delone cluster Da .

A(a) = (−µ4e4 − µ6e6) ◦ (−e1 + e2 + e3 − e4 + e5 − e6)/2
A∗(a) = 〈−e2,−e3,−e5, e1〉 + (−e1 + e2 + e3 − e4 + e5 − e6)/2
ν = 3, % = 6ω

S(A) : e (132)(456) (123)(465)

B(a) = (−µ4e4 − µ6e6) ◦ (−e1 − e2 − e3 − e4 + e5 − e6)/2
B∗(a) = 〈e2, e3,−e5, e1〉 + (−e1 − e2 − e3 − e4 + e5 − e6)/2
ν = 1, % = 2ω
S(B) : e

C(a)(α) = (µ1e1 + µ5e5) ◦ (e1 + e2 − e3 − e4 + e5 − e6)/2
C∗(a)(α) = 〈−e2, e3, e4, e6〉 + (e1 + e2 − e3 − e4 + e5 − e6)/2
ν = 3, % = 6ω

S(C, α) : e (14523) (132)(456)

C(a)(β) = (µ1e1 + µ5e5) ◦ (e1 + e2 − e3 + e4 + e5 + e6)/2
C∗(a)(β) = 〈−e2, e3,−e4,−e6〉 + (e1 + e2 − e3 + e4 + e5 + e6)/2
ν = 13, % = 26ω
S(C, β) : e (12435) (14523) (13254)

(15342) (132)(456) (24)(56)(11)(33) (12643) (134)(265)

(164)(235) (25364) (14365) (136)(245)

D(a)(α) = (µ1e1 + µ5e5) ◦ (e1 + e2 + e3 + e4 + e5 − e6)/2
D∗(a)(α) = 〈−e2,−e3,−e4, e6〉 + (e1 + e2 + e3 + e4 + e5 − e6)/2
ν = 4, % = 8ω

S(D, α) : e (14523) (13254) (132)(456)

D(a)(β) = (µ1e1 + µ5e5) ◦ (e1 − e2 − e3 + e4 + e5 − e6)/2
D∗(a)(β) = 〈e2, e3,−e4, e6〉 + (e1 − e2 − e3 + e4 + e5 − e6)/2
ν = 4, % = 8ω

S(D, β) : e (14523) (132)(456) (164)(235)

F (a)(α) = (−µ4e4 − µ6e6 − µ1e1)

F ∗(a)(α) = 〈0,−e2 − e3,−e3 + e5, e5 − e2〉 + (−e1 + e2 + e3 − e4 − e5 − e6)/2
ν = 9, % = 18ω

S(F, α) : e (13254) (132)(456) (24)(56)(11)(33)

(143)(256) (123)(465) (12356) (15634) (162)(354)

F (a)(β) = (−µ4e4 − µ6e6 + µ5e5)

F ∗(a)(β) = 〈0,−e2 − e3,−e3 − e1,−e1 − e2〉 + (e1 + e2 + e3 − e4 + e5 − e6)/2
ν = 1, % = 6ω
S(F, β) : e

G(a)(α) = (µ1e1 + µ5e5 − µ6e6)

G∗(a)(α) = 〈0,−e2 + e3, e3 − e4,−e4 − e2〉 + (e1 + e2 − e3 + e4 + e5 − e6)/2
ν = 3, % = 6ω

S(G, α) : e (14523) (132)(456)

G(a)(β) = (µ1e1 + µ5e5 + µ4e4)

G∗(a)(β) = 〈0,−e2 + e3, e3 + e6, e6 − e2〉 + (e1 + e2 − e3 + e4 + e5 − e6)/2
ν = 7, % = 42ω
S(G, β) : e (12435) (14523) (13254)

(15342) (132)(456) (164)(235)

boundariesX = A,B,C,D are joins of a rhombus and a point outside the rhombus plane. The
symbols ‖,⊥ are omitted since there is a unique lifting. The windows and fillings are formed
upon projecting the shifts and boundaries X,X∗ to E⊥ and E‖ respectively. All these filling
constructions are made with one single Coxeter cone, hence with a single orientation.
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Table 5. Delone cluster Dc .

A(c) = (µ1e1 + µ5e5) ◦ (e1 + e2 − e3 + e4 + e5 − e6)/2
A∗(c) = 〈−e2, e3,−e4, e6〉 + (e1 + e2 − e3 + e4 + e5 − e6)/2
ν = 7, % = 14ω
S(A) : e (12435) (14523) (13254)

(15342) (132)(456) (164)(235)

B(c) = (µ1e1 + µ5e5) ◦ (e1 + e2 − e3 − e4 + e5 + e6)/2
B∗(c) = 〈−e2, e3, e4,−e6〉 + (e1 + e2 − e3 − e4 + e5 + e6)/2
ν = 3, % = 6ω

S(B) : e (14523) (132)(456)

C(c)(α) = (−µ4e4 − µ6e6) ◦ (−e1 + e2 − e3 − e4 + e5 − e6)/2
C∗(c)(α) = 〈−e2, e3, e1,−e5〉 + (−e1 + e2 − e3 − e4 + e5 − e6)/2
ν = 2, % = 4ω
S(C, α) : e (13254)

C(c)(β) = (−µ4e4 − µ6e6) ◦ (−e1 − e2 + e3 − e4 + e5 − e6)/2
C∗(c)(β) = 〈2,−3, 1,−5〉 + (−e1 − e2 + e3 − e4 + e5 − e6)/2
ν = 2, % = 4ω

S(C, β) : e (123)(465)

D(c)(α) = (−µ4e4 − µ6e6) ◦ (e1 + e2 + e3 − e4 + e5 − e6)/2
D∗(b)(α) = 〈−e2,−e3,−e1,−e5〉 + (e1 + e2 + e3 − e4 + e5 − e6)/2
ν = 1, % = 2ω
S(D, α) : e

D(c)(β) = (−µ4e4 − µ6e6) ◦ (−e1 + e2 + e3 − e4 − e5 − e6)/2
D∗(c)(β) = 〈−2,−3, 1, 5〉 + (−e1 + e2 + e3 − e4 − e5 − e6)/2
ν = 3, % = 6ω

S(D, β) : e (123)(465) (132)(456)

F (c)(α) = (−µ4e4 − µ6e6 − µ1e1) + (−e1 − e2 − e3 − e4 + e5 − e6)/2
F ∗(c)(α) = 〈0, e2 + e3, e2 − e5, e3 − e5〉 + (−e1 − e2 − e3 − e4 + e5 − e6)/2
ν = 9, % = 18ω

S(F, α) : e (13254) (132)(456) (24)(56)(11)(33)

(143)(256) (123)(465) (12356) (15634) (162)(354)

F (c)(β) = (−µ4e4 − µ6e6 + µ5e5) + (−e1 − e2 − e3 − e4 + e5 − e6)/2
F ∗(c)(β) = 〈0, e2 + e3, e3 + e1, e1 + e2〉 + (−e1 − e2 − e3 − e4 + e5 − e6)/2
ν = 1, % = 6ω
S(F, β) : e

G(c)(α) = (µ1e1 + µ5e5 − µ6e6) + (e1 − e2 + e3 − e4 + e5 − e6)/2
G∗(c)(α) = 〈0, e2 − e3,−e3 + e4, e4 + e2〉 + (e1 − e2 + e3 − e4 + e5 − e6)/2
ν = 3, % = 6ω

S(G, α) : e (14523) (132)(456)

G(c)(β) = (µ1e1 + µ5e5 + µ4e4)

G∗(c)(β) = 〈0, e2 − e3,−e3 − e6,−e6 + e2〉 + (e1 − e2 + e3 + e4 + e5 + e6)/2
ν = 7, % = 42ω
S(G, β) : e (12435) (14523) (13254)

(15342) (132)(456) (164)(235)

The filling construction given in tables 4–6 was based on a single Coxeter cone. By
application of the reflection R1 = (23)(46) equation (8) with respect to the chosen hole point
h we obtain a mirror image of this Coxeter cone which gives rise to a mirror filling. To
obtain this mirror filling, we apply this reflection to the expressions of equations (16) and (17).
Then all the operations (translations and permutations) in tables 4–6 must be replaced by
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Table 6. Delone cluster Db .

A(b) = (−µ2e2 + µ3e3 + (e1 + e2 − e3 − e4 + e5 − e6)/2) ◦ 0
A∗(b) = 〈e1,−e6, e5,−e4〉
ν = 1, % = 4ω
S(A) : e

B(b) = (−µ2e2 + µ3e3 + (−e1 + e2 − e3 − e4 − e5 − e6)/2) ◦ 0
B∗(b) = 〈−e5,−e4,−e1,−e6〉
ν = 7, % = 28ω

S(B) : e (12435) (13254) (123)(465)

(13462) (132)(456) (12356)

C(b) = (µ5e5 − µ3e3 + (e1 + e2 + e3 − e4 − e5 − e6)/2) ◦ 0
C∗(b) = 〈e1,−e6, e2,−e4〉
ν = 2, % = 4ω
S(C) : e (14523)

D(b) = (µ2e2 + µ3e3 + (e1 − e2 − e3 + e4 + e5 − e6)/2) ◦ 0
D∗(b) = 〈e1,−e6, e4, e5〉
ν = 6, % = 12ω
S(D) : e (12435) (14523) (13254)
(15342) (15)(46)(22)(33)

Table 7. Volume composition |X∗
j |, |Xj | as a fraction of V0.

X∗
‖ A∗ B∗ C∗ D∗ F ∗ G∗

|X∗|/V0 2τ + 1 1 τ + 1 τ τ + 1 τ

X⊥ A B C D F G

|X|/V0 2τ + 1 1 τ + 1 τ 3τ + 3 3τ
µ 30 30 60 60 20 20

their conjugates with respect to (23)(46), and the windows and tiles in standard position are
transformed as X → (23)(46)X,X∗ → (23)(46)X∗.

The mirror windows in the transformed equation (16) have the same outer shape but
a reflected standard position. The mirror windows contribute to the G-windows and convert
them into the full scaled triacontahedra given in proposition 14. The transformed equation (17)
determines a new mirror filling of the Delone clustersDa‖ ,D

c
‖ but transforms the filling ofDb‖

into itself.

11. Volume composition of Delone clusters in (T ∗, D6).

The filling and fundamental domain properties for the tilings imply sum rules in terms of the
volumes of the tiles. They are given in this section.

In table 7 we give the volumes for the pairs of tiles of the tiling (T ∗,D6). In the last row
we list the numberµ of translational orbits for the 3-boundaries whose projections are the tiles
and their duals. We define

V0 := 1

12

[
2

τ + 2

]3/2

= τ−2

15

√
τ + 2

2
. (18)

In tables 8–10 we give for the three Delone cells the volume composition in terms of the
tiles X∗

j . For each tile and its hole vertex type α, β . . . we repeat from tables 4–6 the solid
angle % = 2νω as a multiple of the solid angle ω = 4π/120 for the fundamental spherical
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Table 8. Volume composition of Delone cluster Da‖ .

X∗
j 2ν := %/ω Cm (ν/m)

∑
(ν/m) |X∗

j |/V0 (ν/m)|X∗
j |/V0

A∗ 6 C1 3 3 2τ + 1 6τ + 3
B∗ 2 C1 1 1 1 1
C∗, α 6 C1 3 τ + 1 3τ + 3
C∗, β 26 C1 13 16 τ + 1 13τ + 13
D∗, α 8 C1 4 τ 4τ
D∗, β 26 C1 4 8 τ 4τ
F ∗, α 18 C1 9 τ + 1 9τ + 9
F ∗, β 6 C3 1 10 τ + 1 τ + 1
G∗, α 6 C1 3 τ 3τ
G∗, β 42 C3 7 10 τ 7τ
Da‖ 50τ + 30

Table 9. Volume composition of Delone cluster Dc‖ .

X∗
j 2ν := %/ω Cm (ν/m)

∑
(ν/m) |X∗

j |/V0 (ν/m)|X∗
j |/V0

A∗ 14 C1 7 7 2τ + 1 14τ + 7
B∗ 6 C1 3 3 1 3
C∗, α 4 C1 2 τ + 1 2τ + 2
C∗, β 4 C1 2 4 τ + 1 2τ + 2
D∗, α 2 C1 1 τ τ

D∗, β 6 C1 3 4 τ 3τ
F ∗, α 18 C1 9 τ + 1 9τ + 9
F ∗, β 6 C3 1 10 τ + 1 τ + 1
G∗, α 6 C1 3 τ 3τ
G∗, β 42 C3 7 10 τ 7τ
Dc‖ 42τ + 24

Table 10. Volume composition of Delone cluster Db‖ .

X∗
j 2ν := %/ω Cm (ν/m)

∑
(ν/m) |X∗

j |/V0 (ν/m)|X∗
j |/V0

A∗ 4 C2 1 1 2τ + 1 2τ + 1
B∗ 28 C2 7 7 1 7
C∗ 4 C1 2 2 τ + 1 2τ + 2
D∗ 12 C1 6 6 τ 6τ
Db‖ 10τ + 10

Coxeter cone and the rotational point group Cm that preserves the vertex and the tile. Next we
give the number ν/m of occurrences of the tile X∗

j in the Delone cell, first separate for each
vertex type α, β and then summed, and its volume |X∗

j |/V0, where V0 is given in equation (18).
Finally we list the relative volume contribution (ν/m)|X∗

j |/V0. The sum of the entries of the
last column yields the volume |Dh|/V0.

12. Fundamental domains and icosahedral tilings

We apply the notions on fundamental domains as defined in section 5 definitions 6–8 to the
lattices � and icosahedral tilings (T ∗,�). There are basic sets of six-dimensional klotz
cells which together form a fundamental domain according to definitions 6 and 7 for the



1900 P Kramer

six-dimensional lattices. The volume of a six-dimensional klotz cell from equation (1) is
the product of the three-dimensional volumes of projected dual boundaries given in table 7.
We check the sum rule that connects the volumes of the klotz cells with the volume of the
six-dimensional fundamental domain of the lattice according to proposition 3.

Tiling (T , P ). Rhombohedral tiles of shape and volume F,G each in ten orientations. The
sum over products

V (T , P ) = 10|F⊥||F ∗
‖ | + 10|G⊥||G∗

‖| = 10[(3τ)2 + (3τ 2)2]V 2
0 = 1 (19)

is equal to the volume of the six-dimensional unit hypercube.
Next we explore the fundamental domain properties according to definitions 8 and 9.

From the two projected tiles each with ten orientations we obtain for the tiling fundamental
domains of size

|F(T , P )| = 10(|F‖| + |G‖|) (20)

= 10(3τ + 3τ 2)V0 = 30τ 3V0 = |V‖| (21)

equal to the volume of the projected Voronoi cluster V‖. The window of the tiling is V⊥. This
is consistent with

Proposition 15. The triacontahedral Delone clusters V‖ of the tiling (T , P ) each form a
fundamental domain comprising 10 obtuse and 10 oblate rhombohedra.

Tiling (T ∗,D6). The sum over products

V (T ∗,D6) = 30(|A∗
‖||A⊥| + |B∗

‖ ||B⊥|) + 60(|C∗
‖ ||C⊥| + |D∗

‖ ||D⊥|)
+20(|F ∗

‖ ||F⊥| + |G∗
‖||G⊥|)

= [30((τ 6 + 12) + 60(τ 4 + τ 2) + 20(3τ 4 + 3τ 2)]V 2
0 = 2 (22)

is equal to the volume of the six-dimensional Voronoi cell ofD6 given as
√

det = 2 in [3, p 117].
The fundamental domain for the tiling (T ∗,D6) according to definitions 8 and 9 has the size

|F(T ∗,D6)| = 30(|A∗
‖| + |B∗

‖ |) + 60(|C∗
‖ | + |D∗

‖ |) + 20(|F ∗
‖ | + |G∗

‖|)
= [30(2τ + 2) + 60(2τ + 1) + 20(2τ + 1)]V0

= 20τ 4(τ + 2)V0. (23)

From the orientations of the tiles in the fillings given in tables 4–6 it can be verified that the
three filled Delone clusters if combined do not form a fundamental domain for the tiling. This
can also be seen from the volumes: if the fillings of the Delone clusters together would form
a fundamental domain according to definitions 8 and 9, the volumes of the three Delone cells
given in tables 8–10 should add up to the value given in equation (23), which is not the case.

13. Covering by icosahedral Delone clusters

We consider here the covering of vertex points in the icosahedral tilings by Delone clusters
and use proposition 12.

Tiling (T ∗, P ). To examine the covering of this icosahedral tiling by the Delone clusters
V‖ it suffices to check the intersection Co⊥ of one Coxeter cone with the triacontahedral
window V⊥. Its radial edges are closest axis sets ((τ 2/2)©2 , τ©5 /, τ©3 ), scaled by τ 2 compared
with equation (13). Its volume is |Co⊥| = |V⊥|/120 = (τ 3/4)V0. The G-windows are
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triacontahedra τ−2V⊥ located at the hole positions of type (a, c) given in table 1 and intersected
with V⊥. Inspection of the position of these windows within the cone Co⊥ yields:

All points of Co⊥ are covered except for a convex polytope H⊥ located in the simpleton
vertex window. The volume of this uncovered window polytope can be expressed in terms of
V0 as

|H⊥| = (τ−6/4)V0. (24)

Comparing with the Coxeter cone we obtain

|H⊥|/|Co⊥| = (τ−6/4)(4/τ 3) = τ−9. (25)

which is 1.3 per cent. From this result we obtain

Proposition 16. The Delone clustersV‖ cover 98.7 per cent of the vertices in the tiling (T ∗, P ).

Tiling (T ∗,D6). Here the Delone clusters are different, but their windows are the same as
before. A similar analysis of the same Coxeter cone Co⊥ shows:

(i) The Coxeter cone is already covered by the G-windows for the holes of type (a, c).
Therefore any vertex point of the tiling covered by a Delone clusterDb‖ is already covered
by a cluster Da‖ or Dc‖.

(ii) The uncovered window polytope coincides with H⊥. Therefore the percentage of the
covering stays the same.

(iii) The coding tiles F⊥,G⊥ and their positions in V⊥ coincide for both tilings. The centre
positions of the D-clusters of the two tilings must coincide. Inside the Delone clusters,
the tetrahedra (F ∗

‖ ,G
∗
‖)(T ∗,D6) sit exactly inside the corresponding rhombohedra

(F ∗
‖ ,G

∗
‖)(T ∗, P ). The difference between the Da and Db-clusters is manifest in the

even/odd selection of the tetrahedra from the rhombohedral vertices. The covering of the
tiles by the Delone clusters is governed by the criterion proposition 13. The covering of
the tile windows by windows for Delone clusters centred at the vertices of the windows is
studied in [19]. The result is that parts of the tile windows remain uncovered by windows
for Delone clusters. Therefore the Delone covering of the tiles must be incomplete. Since
the Delone clusters in the tiling always cover full tiles, it follows that the uncovered parts
of the tile windows consists of full tiles sitting outside Delone clusters.

This analysis implies that the incomplete covering of the tiling can be constructively
augmented into a complete covering: The tiles sitting outside Delone clusters augment
the incomplete covering as glue tiles. These glue tiles have well defined windows. The
corresponding construction is presently under study [18].

14. Conclusion

We show that Delone clusters with asymmetric fillings are general structures on dual projected
tilings and have well defined windows. We define a fundamental domain for functions
compatible with these tilings. We distinguish vertex and tile covering and give criteria for both
in terms of windows. For the planar Penrose and triangle tiling, we have shown in [16,17] that
Voronoi and Delone clusters have unique filling properties, cover the tiling, form fundamental
domains and appear in definite local configurations. The present Delone clusters in icosahedral
three-dimensional tilings (T ∗, P/D6) display a more complex pattern: the icosahedral Delone
clusters again have a unique and asymmetric filling. They cover the vertex points up to
98.7 per cent. This means that the Delone clusters organize the vertex points to a high degree.
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Nevertheless these clusters do not cover all the tiles of the tiling. Glue tiles can fill the gaps
between them. The fundamental domain property of the Delone clusters holds for the tiling
(T ∗, P ), but does not hold for the tiling (T ∗,D6).

Problems for future study in these icosahedral tilings are the details of the closing of the
gaps between Delone clusters by glue tiles, and the classification of local cluster configurations
in a way similar to what was done for the triangle tiling in [17].
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Bohr H 1927 Beiträge zur Theorie der fastperiodischen Funktionen II Math. Ann. 96 383–406
[3] Conway J H and Sloane N J A 1988 Sphere Packings, Lattices and Groups (New York: Springer) pp 31–6
[4] Duneau M 1995 Quasicrystals with a unique covering cluster Proc. 5th Int. Conf. on Quasicrystals (Avignon,

1995) ed Ch Janot and R Mosseri (Singapore: World Scientific) pp 116–9
[5] Duneau M 2000 Clusters in quasicrystals Proc. 7th Int. Conf. Quasicrystals (Stuttgart, 1999) ed F Gaehler,

P Kramer, H-R Trebin and K Urban Mater. Sci. Eng. A 294–296 192–8
[6] Gratias, Puyraimond F, Quiquandon M and Katz A 2000 Atomic clusters in icosahedral F-type quasicrystals

Preprint
[7] Gummelt P 1996 Penrose tilings as coverings of congruent decagons Geometriae Dedicata 62 1–17
[8] Kepler J 1941 Strena seu de Nive Sexangula (1611) Ges. Werke vol 4, ed M Caspar and F Hammer (Munich)

pp 259–80
[9] Katz A and Gratias D 1993 A geometric approach to chemical ordering in icosahedral structures J. Non-Cryst.

Solids 153, 154 187–95
[10] Katz A and Gratias D 1995 Chemical order and local configurations in AlCuFe-type icosahedral phase Proc.

Int. Conf. on Quasicrystals ed C Janot and R Mosseri (Singapore: World Scientific) pp 164–7
[11] Kramer P 1987 Atomic order in quasicrystals is supported by several unit cells Mod. Phys. Lett. B 1 7–18
[12] Kramer P and Papadopolos Z 1995 Symmetry concepts for quasicrystals and noncommutative crystallography

Proc. ASI Aperiodic Long Range Order (Waterloo, 1995) ed R V Moody (New York: Kluwer) pp 307–30
[13] Kramer P and Schlottmann M 1989 Dualization of Voronoi domains and klotz construction: a general method

for the generation of proper space filling J. Phys. A: Math. Gen. 22 L1097–102
[14] Kramer P, Papadopolos Z and Zeidler D 1992 Concepts of symmetry in quasicrystals AIP Conf. Proc. vol 266,

ed A Frank, T H Seligman and K B Wolf pp 179–200
[15] Kramer P 1999 Quasicrystals: atomic coverings and windows are dual projects J. Phys. A: Math. Gen. 32

5781–93
[16] Kramer P 2000 The cover story: Fibonacci, Penrose, Kepler Proc. 7th Int. Conf. on Quasicrystals (Stuttgart,

1999) ed F Gaehler, P Kramer, H-R Trebin and K Urban Mater. Sci. Eng. A 294–296 401–4
[17] Kramer P 2000 Delone clusters, covering and linkage in the quasiperiodic triangle tiling J. Phys. A: Math. Gen.

33 7885–901
[18] Kramer P et al 2001 Covering presentation and colouring of dual canonical tilings, in preparation
[19] Papadopolos Z and Kasner G 2000 Delone covering of canonical tilings T ∗(D6) Proc. Aperiodic 2000
[20] Jeong H-C and Steinhardt P J 1997 Constructing Penrose-like tilings from a single prototile and the implications

for quasicrystals Phys. Rev. B 55 3520–32


